Study and Application of Combination Prediction Model of Principal Component Analysis and Bp Neural Network
نویسندگان
چکیده
When BP neural network is widely used in many fields, this method shows a lot of shortcomings. In this article, the principle component analysis and BP neural network are combined together to establish a combined prediction model. Firstly, we should use principle component analysis to reduce the dimension of the variables and eliminate the co linearity among the variables. According to the selected principle components, BP neural network model will be built. By comparing with the result of single BP neural network model, the fitting degree (R=0.8528) of the combined model is better than that (R=0.7854) of the single one. After comparing the average differences of two models, we have found that the prediction ability (MSE=0.35) of the combined model is better than that (MSE=0.35) of the single model, which shows that the multi co linearity of the resolution factors. It can reduce the data dimension, optimize the structure of neural network, and quicken the speed of the network training and study. The function of the established combined model is good, which can be promoted in the prediction field.
منابع مشابه
Enhancing Efficiency of Neural Network Model in Prediction of Firms Financial Crisis Using Input Space Dimension Reduction Techniques
The main focus in this study is on data pre-processing, reduction in number of inputs or input space size reduction the purpose of which is the justified generalization of data set in smaller dimensions without losing the most significant data. In case the input space is large, the most important input variables can be identified from which insignificant variables are eliminated, or a variable ...
متن کاملCombined Unfolded Principal Component Analysis and Artificial Neural Network for Determination of Ibuprofen in Human Serum by Three-Dimensional Excitation–Emission Matrix Fluorescence Spectroscopy
This study describes a simple and rapid approach of monitoring ibuprofen (IBP). Unfolded principal component analysis-artificial neural network (UPCA-ANN) and excitation-emission spectra resulted from spectrofluorimetry method were combined to develop new model in the determination of IBF in human serum samples. Fluorescence landscapes with excitation wavelengths from 235 to 265 nm and emission...
متن کاملCombined Unfolded Principal Component Analysis and Artificial Neural Network for Determination of Ibuprofen in Human Serum by Three-Dimensional Excitation–Emission Matrix Fluorescence Spectroscopy
This study describes a simple and rapid approach of monitoring ibuprofen (IBP). Unfolded principal component analysis-artificial neural network (UPCA-ANN) and excitation-emission spectra resulted from spectrofluorimetry method were combined to develop new model in the determination of IBF in human serum samples. Fluorescence landscapes with excitation wavelengths from 235 to 265 nm and emission...
متن کاملOnline Composition Prediction of a Debutanizer Column Using Artificial Neural Network
The current method for composition measurement of an industrial distillation column includes an offline method, which is slow, tedious and could lead to inaccurate results. Among advantages of using online composition designed are to overcome the long time delay introduced by laboratory sampling and provide better estimation, which is suitable for online monitoring purposes. This paper pres...
متن کاملEvaluating Dye Concentration in Bicomponent Solution by PCA-MPR and PCA-ANN Techniques
This paper studies the application of principal component analysis, multiple polynomial regression, and artificial neural network ANN techniques to the quantitative analysis of binary mixture of dye solution. The binary mixtures of three textile dyes including blue, red and yellow colors were analyzed by PCA-Multiple polynomial Regression and PCA-Artificial Neural network PCA-ANN methods. The o...
متن کامل